
Mateniatisk-fysiske Meddelelser
udgivet af

Det Kongelige Danske Videnskabernes Selskab
Bind 34, nr. 15

Mat. Fys. Medd. Dan. Vid. Selsk. 34, no. 15 (1966)

A SIMPLE NONBINARY 
SCATTERING MODEL APPLICABLE TO 

ATOMIC COLLISIONS IN CRYSTALS 
AT LOW ENERGIES

BY

HANS HENRIK ANDERSEN

AND

PETER SIGMUND

København 1966
Kommissionær: Ejnar Munksgaard



Synopsis

This paper presents the solution of a special scattering problem which may be important 
in the theory of slowing-down of atomic particles in crystals. A projectile moves along the center 
axis of a regular ring of n equal atoms which are free and do not interact with each other. The 
interaction between the projectile and each ring atom is described by a Born-Mayer potential, 
and the scattering is assumed to be elastic and governed by the classical equations of motion. 
Because of symmetry, the problem can be reduced to plane motion of a particle in a potential 
of elliptic symmetry. The elliptic force field is approximated by a spherical one, which is dependent 
on the initial conditions of the individual scattering problem. For the spherical symmetrical 
potential, scattering angles and related quantities have been tabulated, but simple analytical 
approximations can be used too. As a result, one obtains the asymptotic velocities of the ring 
atoms as well as the energy loss of the projectile. Furthermore, it can be decided whether the 
projectile is reflected by the ring. Both the feasibility of assumptions specifying the problem 
and the validity of different approximations made in the transformation from the elliptic to 
the spherical potential are investigated. Special attention is paid to proper definitions of collision 
time and collision length which are important in collisions in crystals. Limitations to classical 
scattering arising from the uncertainty principle prove to be more serious than assumed previously. 
Inelastic contributions to the energy loss can easily be included. The oscillator forces binding 
lattice atoms turn out to influence the scattering process only at very small energies. The validity 
of the so-called momentum approximation and a related perturbation method are also in­
vestigated.
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§ 1. Introduction

he slowing-down of an atom in a crystal is a many-body problem. The 
concept of mean free path, governing collisions in gases, is much less 

significant in solids because of the high density of scattering centres. The 
mean free path for elastic collisions with appreciable relative energy transfer 
is comparable to the interatomic distance except for energies considerably 
up in the keV region, dependent on mass and atomic number of projectiles 
and substance atoms involved. At these high energies, the majority of col­
lisions are soft ones, so that perturbation methods may be successful. At 
low energies all collisions are more or less hard ones, so that the perturbation 
approach breaks down. As a consequence of the mean free path being so 
small, correlations between successive collisions, due to the regular lattice 
structure cannot be neglected in low energy collision theory.

Two main lattice structure effects on slowing-down have been proposed. 
Ion bombardment of single crystals parallel to low-indexed directions might 
result in almost completely suppressing close collisions by keeping pro­
jectiles a certain minimum distance away from lattice rows and planes 
(channelling). The experiments are usually done at energies from 1 keV up 
to several MeV, so that a theoretical treatment can make use of perturbation 
methods. But, for interpretation of range distributions and especially the 
so-called “super tails” it is important to investigate the slowing-down 
mechanism at the low energy end, to know whether the projectiles come 
to rest at lattice sites or interstitial positions, and, finally, whether they 
create defects or not. From this, one might also get information on possible 
diffusion following the slowing-down process.

It has furthermore been proposed that lattice geometry causes a high 
probability of nearly head-on (replacement) collisions for knock-on atoms. 
It seems difficult to verify this effect experimentally, but a great variety of 
sputtering and radiation damage phenomena are explained in a plausible way 
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by assuming it to exist. According to computer simulations of slowing-down, 
low energy knock-on atoms act preferably by exciting collision sequences 
along close-packed directions without travelling far away from their starting 
positions.

The characteristic difficulties of a many-body problem arise as soon as 
a collision is neither soft nor a pure two-body event. But the many-body 
problem might be simplified in special cases. Both in collision sequences 
and channelling almost symmetrical orbits between and parallel to lattice 
rows are supposed to have an appreciable statistical weight within certain 
energy intervals. Therefore, calculations of perfectly symmetric motion might 
answer some of the questions raised above.

This paper presents the treatment of a simple model. A set of lattice 
rows is resolved into symmetric rings; the projectile moves along their com­
mon symmetry axis, and its interaction with one ring of atoms is considered 
to be the basic event. Under certain simplifying assumptions it is possible 
to reduce this problem to scattering of one particle in a fixed force field, 
which can be solved approximately.

The accuracy of approximations as well as the limitations of classical 
elastic scattering and the applicability to collisions in crystals are examined. 
The main uncertainty entering the model is the interatomic potential. Tin1 
repulsive Born-Mayer potential is used throughout the paper, mainly be­
cause of simplicity and for comparison with other investigations. As far as 
possible, the results are discussed without specifying potential constants too 
strictly.

The model gives rather definite answers on the break-down of pertur­
bation theory and the maximum elastic energy transfer. Furthermore, it is 
possible to define a collision length in order to estimate the overlap between 
successive events. Finally, some suggestions are made about the approximate 
treatment of non-symmetric many-body collisions.

The present paper contains the general theory. It deals with the speci­
fication of the model and some direct consequences (§2); several methods 
of reduction to spherical scattering are examined in § 3; general results such 
as transferred energies and scattering angles are discussed in § 4, both 
numerically and analytically; this chapter also deals with the concept of 
collision length as well as the validity of approximations made in §3; the 
last chapter is dedicated to the question of applicability of the model to 
collisions in crystals and to a discussion of quantum corrections and in­
elasticity. Applications to channelling and collision sequences will be con­
tained in a forth-coming paper.
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2.1 Basic definitions
§2. The Model

The dynamics of the following system (Andersen & Sigmund, 1965 a) 
will be investigated:

1) n atoms i = l...n of mass m1( neither bound by external forces nor 
interacting with each other, form initially a regular ring with radius L.

2) A projectile of mass m0 moving on the ring axis with an initial velocity
(Fig. 1) interacts with the ring atoms via some repulsive potential

V(rw) = V(|?o-7-|). (2.1.1)

In applications only Born-Mayer interaction

V(r) = Ae~r,a 
will be used.

3) The collision is treated by classical mechanics.

(2-1.2)

—> —> —>

Fig. 1. Projectile 0 interacting with a ring of n = 4 atoms. v0 — initial velocity. v'o and final 
velocities of projectile and ring particle 1.

0

vo
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Due to the symmetrical initial conditions the projectile will keep on 
moving on the ring axis, and ring atoms perform identical motions in planes 
made up by the axis and their initial positions (Fig. 1). Quantities of in­
terest are:

i) the total energy loss AE of the projectile to the ring,
ii) the asymptotic orbits and energies of ring particles,

iii) the energy limit below which the projectile will be reflected by the 
ring, and

iv) the collision time and corresponding path length.

The feasibility of the assumptions involved in l)-3) will be examined 
in later sections of this paper. The validity of assumption 1) depends on 
the role of binding forces (sect. 5.3). The significance of Born-Mayer re­
pulsion and the choice of constants A, a is discussed in a separate paper 
(Andersen & Sigmund, 1965 b). Quantum mechanical limitations and in­
elastic effects are mentioned in sects. 5.1 and 5.2.

In applications to collisions in crystals, the ring radius L will be at least 
one half nearest neighbour distance (L ~ 1A), n may take the values 2, 3, 
and 4, a is supposed to be slightly smaller than one half Bohr-radius 
(fl ~ 0.2Å), while A varies over a wide range of energies in the keV region, 
dependent on the atoms involved. Initial energies of interest range from 
about 10 eV up to 10 keV.

2.2 The perturbation approach

If the energy loss zt£ is very small compared to the initial energy Eo of the 
projectile, AE can be calculated by first order perturbation theory (momentum 
approximation; for brevity: MA)

oc
AE-n-^( <2-2j>

— 00

where grad± indicates the component of the force perpendicular to the orbit of the 
projectile. This orbit is assumed to be a straight line, while particle 1 is considered 
as being fixed during the collision.

For Born-Mayer interaction (2.1.2) one gets (Brinkmann, 1954)

AE
m0A2

ii--------
mi Eo

(2.2.2)
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The function /v0(£) is a modified Ilankel function with the asymptotic expansion 
(Jahnke et al., 1960)

A'o(^) ~ for large (2.2.3)

According to the previous section,

ê = Lia > 5. (2.2.4)

For these arguments the expansion (2.2.3) approximates Ko with an accuracy better 
than 3 pct.

At small energies AE becomes large according to (2.2.2), so this approach must 
break down. In order to estimate the applicability of (2.2.2) we note that AE 
cannot be greater than either the initial energy Eo or the height of the potential 
barrier at the ring center, so

AE Eo (2.2.5)
and

AE nAe~LlA. (2.2.6)

Eo must be much greater than the limiting energies defined by (2.2.5) and (2.2.6). 
Inserting (2.2.2) and (2.2.3) we obtain

and

Fo »

ti mn L T, 
-- _ — Ae~Lla
2 mi a

(2.2.59

(2.2.6')

as necessary conditions for the MA to be a good approximation.
For not too different masses, the two conditions are essentially equivalent. If 

m0 » mi, (2.2.69 is the stronger one.
Lehmann & Leibfried (1963) have derived a criterion of the same type by com­

paring second and first order contributions in the perturbation series for the scat­
tering angle of merely two particles:

j/2 \
— Ae~ La. 
a

(2.2.7)

(2.2.7) is equivalent to (2.2.69 for m0 > mi. It is easily seen that in our case (2.2.7) 
cannot be the appropriate criterion as soon as m0 « mi; the perturbation approach 
is reasonable if
i) the ring particles only move a small distance away during the collision, and 

ii) the deflection of the projectile is small.
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The latter condition is ideally fulfilled in the ring collision, while a corresponding 
two-particle event with m0 « nq might result in a considerable deflection of the 
projectile. Hence, (2.2.7) will underestimate the applicability of the MA.

Numerically, the typical limits vary from some tens of eV up to several keV, 
because of the strong dependence on L and on the atoms involved.

Standard scattering theory is easily carried out beyond the MA, when one deals 
with pure two-body collisions. Also for our model some quantities of interest may 
be estimated using two-body scattering theory, but this must be expected to be 
a poor approach to the problem1. A comparison to the more accurate evaluation 
will be made in sect. 4.6.

1 Sometimes, especially in computer calculations, the interaction is cut oft at a certain 
distance in order to ensure the two-body nature of collisions. It is obvious that this procedure 
might give rise to peculiar multiple scattering effects when applied to an almost symmetric 
ring collision (Robinson and Oen, 1963). The completely symmetric case cannot be simplified 
in this way.

2.3 Conservation laws

An accurate treatment is simplified by stating the conservation laws 
governing our system.

The asymptotic velocities o) of different ring atoms (Fig. 1) and their 
angles with the n0-axis are equal because of symmetry:

where
(2.3.1)

(2.3.2)

Hence, momentum and energy conservation yield

(2.3.3)IU0v0 = /77OPO + 77 ’ 7771771 COS 7'1’

(2.3.4)

v'q being the asymptotic velocity of the projectile.
Conservation of angular and transverse momentum has been fully taken 

into account by stating the symmetry of the orbits.
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(2.3.3) and (2.3.4) lead to the relative energy transfer to one ring atom,

(2.3.5)

The total energy loss to the ring is given by

AE = Eq — Eq = n • AElf (2.3.6)

where Eq is the asymptotic projectile energy; the asymptotic velocity becomes

! nil 21 — n — cos
"'o

1 x n?1 2

1 + n -— cos

The particle is reflected by the ring if u0/i>0 is negative, i. e.

cos (pY > [/ m0/nm1. (2.3.7)

The reverse relation to (2.3.7) does not necessarily involve that the pro­
jectile really penetrates the ring, as the ring particles have a velocity com­
ponent in the forward direction. However, in many applications this com­
ponent is relatively small.

Most of the quantities of interest have thus been expressed by the angle 
(pr. Clearly, cp1 is governed by the interatomic potential.

2.4 Transformation to relative coordinates

Convenient coordinates describing the internal state of the system are 
the ring radius and the distance of the projectile from the ring center. Let 

—y —
us consider the motion in a plane formed by i>0 and and choose i>0 as 
the x-axis (Fig. 2). Then,

= (æo>°); n = CmD- (2.4.1)
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Fig. 2. Definition of relative coordinates x,y. r0, rn, , rt : position and velocity of projectile 
—> —>•

and one ring atom. R, R: position and velocity of center-of-mass.

1'he center-of-mass moves along the .r-axis, so

-> llln 111,
li = (X, O) ; X = <rn + Ji • x,,

M 0 M 1

where M is the total mass:

71/ = ni0 + yj/nj.

(2.4.2)

(2.4.3)

Furthermore, we define relative coordinates

so that
a- = .s- • (,r0 - .rj; y = y1/s,

Ui = w-

(2-4.4)

(2.4.5)

In (2.4.4) we have introduced a scaling factor s. This is necessary in 
order to make the reduced mass isotropic. The kinetic energy
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becomes in the new coordinates (2.4.5)

This simplifies to

if we choose

^ykin

s4 - m0/M < 1.
inQ + iun1

(2.4.6)

(2.4.7)

The total potential energy becomes, according to (2.1.1) and Fig. 2,

= Wm) - "'X'-Ol) - HV(|W + .s2ÿ2). (2.4.8)
i

So, in the reduced scattering problem the force field has elliptical symmetry. 
If the projectile comes in from infinity we get the initial conditions

a*(f  = — oo) = -oo;

1
p = y(- oo) = - y/- oo) = L/s, (2.4.9)

s

Dr = .t(-oo) = SU0, (2.4.10)

„ lnl 2/-2 -2J nml rr
Er = n S (æ + « ) = k0 ’ (2.4.11)

where we have made use of (2.4.4), (2.4.6) and (2.4.7). The quantities p, 
vr and Er are the impact parameter, relative velocity and relative energy 
defining the reduced scattering problem (Fig. 3).

The relation between scattering angle & in the reduced system (Fig. 3) 
and (pi is found in the following way:

s2v0 sin 
s4p0 - s4p0 cos #

$2 ct§ #/2 • (2.4.12)
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Fig. 3. The reduced scattering problem for Born-Mayer interaction. Successive equipotential 
lines differ by a factor of e± . Quantitative details correspond to an example discussed in sect.

4.3 (Fig. 7).

Here we have used (2.4.5), (2.4.2) and (2.4.10). Inserting (2.4.12) into 
(2.3.5) we obtain the energy loss (2.3.6):

fhe condition (2.3.7) for reflection reads

(2.4.13)

sin2 (9/2 (2.4.14)

The projectile penetrates the ring if 0 < n/2, i. e.

sin2#/2 < 1/2. (2.4.15)
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In the intermediate interval,

(2.4.16)

the projectile moves asymptotically in the forward direction, but behind the 
centre of the ring.

§ 3. Reduction to Spherical Symmetry
3.1 General remarks

The reduced scattering problem is simple, but nontrivial because of the 
elliptical symmetry of the potential 0(.r,y). As angular momentum is not 
conserved, the scattering angle & and related quantities cannot be expressed 
by integrals as in standard scattering theory. In order to calculate only the 
orbit of the scattered particle, it would be most convenient to start at Jacobi’s 
principle, which states that

2
ô J | - ø(.r, y) ds = 0; (3.1.1)

1

where y = y(rr) has to be varied between two fixed points 1 and 2 in the 
x, y-plane, and ds is the line element

ds = |/1 + (dy/dx)2 dx.

(3.1.1) is equivalent to a differential equation for y = y(.r):

Several standard procedures have been examined in order to solve 
(3.1.1) or (3.1.2). Most of them are rather specific for the spherical case. 
The only systematic approach, which was found to have some success, is 
the perturbation series expansion of (3.1.2). The first two terms are evaluated 
in Appendix A. But, as was stated by Lehmann and Leib fried (1963) for 
spherically symmetric interaction, the perturbation series has in general 
a finite radius of convergence, and higher than first order perturbations do 
hardly improve the scattering formula.
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Instead of calculating approximate orbits in the exact field, one can also 
calculate exact orbits for an approximate field. The method is widely used 
in scattering theory and has the advantage that the limit of applicability 
may easily be found by comparing “true” and approximate forces.

As long as m0 ~ mlt the excentricity of the potential lines is moderate, 

fhe proportion between major and minor axis: -g = |/1 + nzj?1/77?0 becomes 

~ 2.5. We shall mainly concentrate our attention on the case m0 it mlf as 
in the opposite case, m0 « 77?1, the MA remains valid down to sufficiently 
low energies, given by (2.2.5'). Furthermore, deflections in strongly varying 
Born-Mayer fields will take place in a rather small region in space. Hence, 
in the case m0 it mx it is expected to be an excellent approximation to replace 
0(.r, y) by a potential of spherical symmetry which is similar to 0 in a 
certain critical region. This critical region should be centered around that 
point where the scattered particle achieves its highest potential energy. Un­
fortunately, it is not possible lo lind this point in a straightforward manner 
when p and Er are given.

Therefore, two complementary matching methods are discussed, which 
we call close collision approximation (CCA) and distant collision approxima­
tion (DCA). In both cases the center of a spherical potential is found from 
the radius of curvature of a certain equipotential line. CCA and DCA will 
be seen to cover the whole curve $(/>) for o < p < oo for given Er with a 
good accuracy. As small impact parameters p do not occur in applications, 
the DCA will be the more important approach.

3.2 Close collision approximation

Figure 4 shows the orbit of a particle in an almost central collision. The 
closest distance of approach 7?(p) will be approximately equal to R(p = 0) 
= 7?0, which is given by

= Er. (3.2.1)

to
The radius of curvature of the equipotential line in (-7?o,0) is, according 

(2.4.8), given by

Hence, the centre of the CCA potential will be at
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Fig. 4. Construction of the CCA potential (schematically). For small p only the potential 
near (— RQ, 0) causes deflection. xr is the center of curvature to the potential line through this point.

(3.2.3)

The CCA potential is then constructed in such a way that

<Z>c(.r, y) = 0(.r,y) for y = 0, a: < 0. (3.2.4)

For the BM potential (2.1.2), <Z>(.r, y ) is given by

so that

0(.r, y) = nA exp

0c(.t, y) = nAex,lsa

(3.2.5)

(3.2.6)

where r' is the distance between (x, y) and (xc, 0). Hence, the scattering 
angle in the CCA may be expressed by that for a spherically symmetric 
potential

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 15. 2
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(3.2.7)
with

(3.2.8)

(3.3.1)

and the symmetry center has the ordinate

(3.3.2)

(3.3.3)

= ADe~r'la^, (3.3.4)
where

(3.3.5)

and

(3.3.6)

where we have made use of (3.2.1) and (3.2.3). Obviously, yields the 
exact solution for the central collision. The validity of this approach at 
finite impact parameters will be investigated in sects. 4.3 and 4.5.

where r is now the distance between (,r, y) and (0,yB). Hence, the DCA 
potential is given by

3.3 Distant collision approximation

In distant collisions, where & is small, the scattering will essentially take 
place near the point (O,jd). We can therefore choose the center of curvature 
of the potential line through this point as symmetry center of another matching 
potential as indicated in Fig. 5. The radius of curvature q is given by

Me

&D(x>y) = 0(m) f(,r æ = 0, y > Pp.

O2)2Q = --- ---  = p.S'4,
F

syD sr'

(PD = n • A • e a • e a

syD sp
- — -—(1-8*)

Ad = n•A • e a = nAe a

a
aD =

s

yD = p- Q = X1 - •s>4)-
(I)D is chosen so that
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point. Quantitative details correspond to the example discussed in sect. 4.3 (Fig. 7).

Contrary to the CCA we also get a new impact parameter in the DCA. 
Instead of p we have (Fig. 5)

(3.3.7)

The scattering angle is determined by the two proportions

L nmi
Pd _ L. -E, _ £o J ' M 
aD a Ad M A

Deriving (3.3.8) we have used (2.4.9), (2.4.11) and (2.4.7).
Also the applicability of this approach will be examined in sections 4.3 

and 4.5.

3.4 Constant velocity approximation

A much simpler reduction to spherical scattering is found in the case 
77?O » nnip where the projectile moves nearly uniformly independent of the 
interaction potential. In this case it seems reasonable to go over to a system 
moving with velocity v0 and to consider the projectile as a fixed scattering 
center in this system. As the ring particles are independent of each other, 
they are scattered individually by an angle a (Fig. 6), which can be cal- 

2*
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culated from the true Born-Mayer potential as interaction, impact parameter 
L and energy

(3.4.1)

In the laboratory system, particle 1 has, after the 
components

v'ix = ^oC1 - cos a)

ply = fos^na’

collision, velocity

(3.4.2)

corresponding to a scattering angle given by

and an energy

sin atg9?i =----------= ctga/2,
1 — cos a

(3.4.3)

Ill,
AEy = 4 — Eq ■ sin2 a/2 .

mo
(3.4.4)

An approach of this kind has been used by Weijsenfeld (1964) in the theory 
of assisted focusing collision sequences. The essential difference to the MA 
is that the ring particles are not considered to be fixed during the collision. 
They are free to move away, while the projectile is restricted in its transversal 
motion. This approach, which we call constant velocity approximation 
(CVA), is a perturbation approach in the sense that the deflection of the ring 
particles is determined by the zero order motion of the projectile. The 
approximation does, however, not involve an expansion in powers of the 
interaction potential. It will turn out in sect. 4.3 that the quality of the CVA 
is surprisingly good, even for lighter projectiles.

When mQ is of the order of mui, the CVA violates the conservation laws. 
Weijsenfeld avoided this by assuming only the (/-component vly to be 
determined by (3.4.2), while the .r-component is found from energy and 
momentum conservation. However, for not too large energy transfers the 
two formulations are essentially equivalent, as the ring particles move almost 
perpendicularly to u0. The straightforward formulation of the Weijsenfeld 
approach gives an energy transfer

/
AEX = 4 — Eo sm2 a/2 1 + 2n sin4 - + . . .

in0 \ m0 2
(3.4.5)
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Fig. 6. Constant velocity approximation. The situation in Fig. 1 is considered from a system 
moving with The projectile 0 is assnmed to be at rest in this system throughout the collision.

which dillers from (3.4.4) only by a correction term of fourth order in 
sin a/2, which is negligible. We prefer to use the CVA, as it is much simpler 
than Weijsenfeld’s original approach. As it will turn out in sect. 4.3, the 
CVA may even be valid if zll^ is not negligible compared to Eo.

§ 4. Application to Born-Mayer Interaction

4.1 Accurate scattering angles

We have now found three possibilities of reducing the original problem 
of finding to that of calculating the scattering angle

(4.1.1)

for some spherical Born-Mayer potential

ø'(r') = A'e“r'/a' (4.1.2)
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E' and p' indicate relative energy and impact parameter in any of the three 
spherical scattering problems. rm is the distance of closest approach de­
fined by the zero of the square root in (4.1.1).

The integral (4.1.1) has been tabulated by Robinson (1963) for 0.005 
< E'/A' < 1 and p'/a ranging from zero up to such values where the 
accuracy of the MA is sufficiently good. The tables provide enough points 
to cover all cases of interest in applications as far as concerns the DCA, 
which is the approximation mostly used later on. Therefore, in plotting AE 
vs. Eo, uncertainties from the evaluation of (4.1.1) can be assumed to be 
negligible within the range of validity of the DCA.

For those cases where the tables do not provide data one has to use 
analytical approximations. A list of references has been given in an earlier 
paper (Sigmund & Vajda, 1964). We only mention two formulae, the most 
accurate one given by Heinrich (1964):

1
sin ??/2 = -------—-, (4.1.3)1 1 + 2/i?x V 7

where
A' r'3

#1- ...(4.1.4)
E a p

It is seen by expansion that (4.1.3) gives the correct result at small angles. 
Furthermore, #(//= 0) = tt, as it must be. Within the whole range of the 
numerical tables the accuracy of (4.1.3) is better than 4 pct. The disad­
vantage of this formula is that rm is defined by a transcendental equation, 
so one has to use p and rm as independent variables and calculate £/.

At large angles the following formula has proved to be a good approxi­
mation (Sigmund & Vajda, 1964):

(4.1.5)

where is the head-on radius defined by

(4.1.6)

(4.1.5) is based on the matching method of Leibfried & Oen (1962).
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4.2 A simple analytical approximation

For qualitative considerations the above mentioned scattering formulae 
are too complex. If one is not interested in a high accuracy, an extremely 
simple approximation may be found as follows. The potential (4.1.2) is 
matched by a cut-off Coulomb potential:

(4.2.1)

The constants C and c are chosen so that the potentials agree in value and 
slope at r' = p':

= ®'(p') and (4-2.2)dp dp

This matching method is similar to those by Leibfried & Oen (1962) and 
Lehmann & Robinson (1964); Leibfried and Oen fulfilled the conditions 
(4.2.2) in r = instead of r = p , and Lehmann and Robinson matched 
in r = rm. For the very central collision (p « R'q) our matching procedure 
is expected to break down.

Potential (4.2.1) yields, according to Leibfried and Oen,

(4.2.3)

We shall mainly apply (4.2.3) in connection with the DCA. According to
(3.3.8),  we have
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when we use the numerical estimates of sects. 2.1 and 3.1. Comparison with 
the numerical tables shows that the accuracy of (4.2.3) is better than 10 pct. 
for p'/a ~ 1.5. For the very lowest values of pDlaD one has to use more 
careful estimates. Clearly, (4.2.3) becomes wrong for p' < a . Inserting
(3.3.8) in (4.2.3) we obtain

2 - 0 - - 1
A M a

DCA: sin2- = ----- -------------- ------rj------------------. (4.2.4)

a 1 M A ! M A

4.3 General results

In order to give an impression of the applicability of the different ap­
proximation methods we discuss an example. Fig. 7 shows sin $/2 as a 
function of L/a for n = 2; m0 = m1; Eo/A = 4.4510-3. For the copper 
potential of Gibson et al. (1960),

A = 22.5 keV; a = .196 Å for Cu, (4.3.1)

from the numerical tables. (4.3.5)

this corresponds to Eo = 100 eV. The calculations were done in the fol-
lowing way :

CCA : Parameters from (3.2.8), 
b) from (4.1.5)

sin #/2 a) from (4.1.3),
(4.3.2)

DCA: Parameters from (3.3.8),
(Robinson, 1963)

sin #/2 from numerical tables
(4.3.3)

MA: $ = (tg#)(1) from (A. 8) (4.3.4)

CVA: 'O from (2.4.12), where (f>i is given by (3.4.3) and a is taken

As the CVA has no connection to the elliptical scattering problem, the re­
duced scattering angle & introduced by (4.3.5) has only formal significance. 
It is plotted in Fig. 7 in order to show the direction of discrepancies.

We know that the CCA and MA are correct at, respectively, small and 
large impact parameters. Fig. 7 indicates that the DCA not only yields the
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Fig. 7. Comparison of scattering angles in the reduced system, obtained by different approxima­
tions discussed in § 3. &(p) passes probably through the shaded area in the region where the 

approximations differ most drastically (sect. 4.5).

asymptotic behaviour in these extremal cases (in Fig. 7 : L/a ~ 3 and 
L/a ~ 8), but also represents a plausible interpolation in the region where 
the discrepancy between the four curves is greatest (in Fig. 7: 5 ~ L/a ~ 7). 
We note that it is just this interval of L/a which is extremely important 
in applications.

It will be shown in sect. 4.5 that the DCxA. slightly underestimates $ and 
that the correct #-curve most probably lies in the shaded region.

We note that s4 = 1/3 in this example. For s4 closer to 1, the quality 
of the DCA is expected to be better, as this approach yields the exact solution 
for s4 = 1. Let us, therefore, look at another example, where s4 is much 
smaller.

In applications we are mainly interested in the dependence of AE on 
Eo at a fixed ring radius L. AE is found from (2.4.13). We consider the 
case (Fig. 8)
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ni1
20 L
— ; - = 6.5; A = 10.1 keV,
64 a 

(4.3.6)

where s4 = 0.135. (4.3.6) might represent a neon ion interacting with two 
nearest neighbour atoms in a copper crystal under the assumption that (4.3.1 ) 
properly describes the interaction between copper atoms (Andersen & Sig­
mund, 1965 b).

It appears that AE is reasonably approximated by the DCA over the 
whole range of energies Eo. This curve agrees with the MA at high energies 
(Eq ~ 100 eV), it goes through a maximum somewhat smaller than the 
potential barrier (30 eV) so that condition (2.2.6) is fulfilled. Below the 
maximum Z1E approaches the straight line zlE = Eo corresponding to total 
stopping, and at still smaller energies the curve bends away from AE = Eo, 
corresponding to reflection (2.3.7). Only at very low energies (Eo « 10 eV) 
does DCA agree with CCA.

The CVA appears to be a poor approach in this case, which is due to 
the small mass ratio /n0/mn1 = 0.156. On the other hand, the MA appears 
to be valid almost down to Eo = 50 eV. Because of their big masses, the 
ring atoms can be considered as remaining at their lattice sites during the 
collision, so that condition i) in sect. 2.2 is fulfilled.

An analytical evaluation is possible for not too small projectile masses 
(m0 ~ nm1/2). We insert the simple formula (4.2.4) into (2.4.13). Exact 
determination of the maximum of AE would be rather complicated because 
of the last factor in (2.4.13). Fortunately, this is slowly varying and close 
to 1 near the maximum as will be seen. If we neglect it for the determination 
of the maximum we obtain by differentiation

E0(max)
m0
2/nx

- Ae~Lla. 
a

(4.3.7)

The energy transfer at E0(max) becomes then

AE(max) AE(E0(max))
nzn1 a
‘2m0 L

(4.3.8)

(4.3.8) states that a heavy projectile (m0 » is able to dissolve the ring 
almost completely during the collision, i. e. to transform the potential barrier 
nAe~Lla into kinetic energy of ring atoms.
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Fig. 8. AE vs. Eo for n = 2; — = — ; s4 = 0.135, L/a = 6.5; A = 10.1 keV (Ne in Cu). 
64

nin^ a
As soon as the term-------- becomes comparable to 1 (if m1 » m0),

2m0 L
dE'(max) will be greater than (4.3.8) but, of course, smaller than the potential 
barrier. A more accurate analytical determination is, however, doubtful in 
view of the approximate character of the scattering formula (4.2.3). The 
error in (4.3.8) is by comparison to correct evaluation of the DCA found 
to be smaller than 25 pct. for s4 > .25.

The complete function AE(Eq) becomes

where

zlE = nAe~Lla
4£(l-/?/2) /

(i +o2- M (1 + 02 - 2ß£

M a
L

(4.3.9.)

£ = £o/£o(max); (4.3.10)
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Especially for ni0 » zzq, ß « 1 so

Tl 4£
AE * nAe~Lla----------- for f > 1 .

(1+02
(4.3.11)

This is a very important formula as it covers a region where the MA over­
estimates AE strongly. Inserting (4.3.7) into (2.2.2) and using (2.2.3) one 
would obtain

MA: dE(E'0(max)) = 7tnAe~Lla, (4.3.12)

which dillers from (4.3.8) by a factor of %. It is characteristic for the case 
iiiq » that the maximum of AE is extremely broad. According to (4.3.11), 
AFJ drops to J/i(max)/2 at £ = 5.8. It should be mentioned that (4.3.11), 
within the mentioned accuracy of about 25 pct., also describes AE for 
£0 < £0(max).

While the MA fails completely for heavy projectile masses, » n^, the 
CVA is supposed to be a good approximation. Evaluating (3.4.4) by use

For ;n0 » nq, one gets ß (ijL, so (4.3.13) agrees with (4.3.9), apart from 
the last factor in (4.3.9), which is small for £ > 1.

The discussion of laboratory scattering angles is postponed to sect. 4.6. 
Here we examine the question whether the projectile will be reflected. At 
first we note that the condition (2.4.14) cannot be fulfilled as soon as

M > 2/znq or m0 > nn^. (4.3.14)

This means that a heavy projectile penetrating a series of concentric rings 
of free, light atoms along their common axis will never be stopped completely. 
In a crystal, of course, the binding of ring atoms and thermal scattering 
will prevent this kind of “hyperchannelling”. For < nrn}, the projectile 
will be reflected if its energy is smaller than a certain limiting energy Eretl 
corresponding to a critical scattering angle (2.4.14)

(4.3.15)
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1 we obtain

L
CCA: (4.3.16)

a

. (4.3.17)
a

gives the expected result

(4.3.18)

27777?!

always greater than ti/2. For these angles the Born-Mayer scattering 
well approximated by (4.1.5). Inserting (3.2.8) and (3.3.8) into 
and neglecting a /Ro «

L /nm1

O'-

expnA 1 nl°
77777]

7nü xi /exp
777771-1 \

namely, the potential barrier. $retl is about %/2 in this case, so the CCA is 
not expected to give reliable ^-values.

For 7770 «=*  7?n71, where ?7refl n, the CCA yields

(4.3.19)

This energy might become very small, hence the validity of (4.3.19) is 
limited again because of the role of binding forces (sect. 5.3).

The condition (2.4.15) for penetration is only evaluated in the DCA. 
Analogous to (4.3.17) one obtains

OCA: Epen =

Obviously, for m0 «

as it must be.

(4.3.20)

(4.3.21)

4.4 Collision Length and Time Integral

The concept of collision length, which is a path length travelled during 
the collision, is needed both for the problem of overlap between successive 
impacts, the role of binding forces (sect. 5.3) and the validity of matching 
potentials (next section). The fundamental formulae will be derived in this 
section.
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Let us start by considering a reduced system with fixed, spherical Born- 
Mayer potential and use the notations from sect. 4.1.

Within the limits of the MA, the living particle (m' = mass, v' = velocity) 
transfers the total momentum

(4.4.1)

to the scattering center. We define a collision time Jr' by the relation

At' , (4.4.2)

where Fmax represents the force acting at the closest approach, i. e.

(4.4.3)

for a particle moving on a straight line. Comparing (4.4.1), (4.4.2) and
(4.4.3) we have to choose

(4.4.3)

This corresponds to a collision length

A' = |/27ta'p/. (4.4.4)

It is characteristic for the rapidly decreasing Born-Mayer potential that A' 
is relatively small. Seen from the scattering center, the interaction takes 
place within an angle (Fig. 9) A'Ip' = |/27m'/// going to zero f°r p' » 
For comparison we mention that the corresponding angle for the Coulomb 
potential is 90° for large //. The potential at the end of the collision length 
is given by

Cd - A' expt- 4 ['/>'2 + (472)2I ~ A'e-”’1“’ • e~Mi (4.4.5)

for p'/a » 1 , which is less than half of the potential in the closest approach.
So far, we required the ALA. to be valid. Let us now keep p' fixed and 

lower the energy so that we arrive at appreciable scattering angles, where 
the MA breaks down. As a first approximation, A' being defined as the 
real path length travelled during the collision remains independent of
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Fig. 9. The collision length A'. 0: scattering center, p': impact parameter, v': relative velocity.

energy; perhaps it will slightly decrease, since the particle is scattered away 
from the force field. Thus, we suppose that the relation

A' ^5 |/27ra'p' (4.4.6)

should be valid even for large angle scattering.
Let us verify this by considering the opposite case, where p' is small. 

For p' = 0, one can solve the equation of motion exactly (Lehmann & 
Leibfried, 1961) with the result

v 't 
r' = v tanh —. (4.4.7)

2a

The velocity r is zero in the closest approach (/ = 0). From (4.4.7) we get 
a collision time

zlr' = -ia'/i/ (4.4.8)

and a corresponding path length

A' 2a' for p' 0, (4.4.9)

as (4.4.7) represents, roughly, a uniformly accelerated motion within 
|f| < 2a'/v'.

Comparing the collision lengths (4.4.4) and (4.4.9) we find the un­
equality (4.4.6) being fulfilled, except for impact parameters pfa < 2/ti, 
while a comparison of the corresponding collision times (4.4.3) and (4.4.8) 
gives discrepancies already at p'/ci' < 8/n. So we conclude that A' is a well- 
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defined quantity, which for all impact parameters under consideration 
(p'/a' ~ 1) may be majorized by (4.4.6).

We want to apply this result to our collision model within the range of 
applicability of the DCA. The corresponding path lengths in the elliptical 
potential can easily be found from the definitions in sect. 3.3, but the re­
lation to laboratory quantities involves the so-called time integral. This 
quantity, which connects relative and centre-of-mass motion, is usually 
(Leiimann & Leibfried, 1961) derived for two-particle collisions but can 
easily be generalized to our situation. This is done in Appendix B. The 
coordinate system is chosen so that the origin is the initial ring center, and 
the time scale is such that the closest approach happens at f = 0. For 
t » 0, i. e. after the interaction, relative and center-of-mass motion obey the 
following equations :

(B. 12): r'(f) - \ p^ + (suof + td)2. (4.4.10)

(B. 3) & (B. 8): X(0 = s4 (pot - tp/s) . (4.4.11)

The time integral xD is given by (B. 9) and has been tabulated by Robinson 
(1963). The position of the projectile at t = 0 as well as the complete asymp­
totic motions £f0(/), .r1(t), y1(0 are listed in (B. 11) and (B. 14).

Finally, we are interested in the actual collision time Ax corresponding 
to the path length (4.4.6). For not too large angles (# < tt/2), A’ = 2 PoQ' 
(Fig. 13 in appendix B) will approximately be equal to 2QQ'. Applying the 
cosine relation on the triangle OQQ' and inserting (4.4.10) and (4.4.4), we 
obtain

dr = — (l/‘27iaDpD + 2pD tg#/2 - 2rJ. (4.4.12)
•w0 \ /

For $ = 0, xD goes to zero, so that Ax goes over into Ax' (4.4.3), as it must 
be. At finite angles, Ax is greater than Ax'.

4.5 Validity of Approximations.

In this section we discuss the applicability of our four approximations within 
the model defined in 2.1. The limitations of the model itself will then be mentioned 
in the subsequent chapter.

In the following we assume scattering angles for a spherical potential to be given 
exactly, for example from Robinson’s tables, so that the only approximative step 
consists in reduction to spherical symmetry. We shall first discuss the different 
approximations in terms of the reduced scattering angle
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From the construction we know that
i) the CCA yields the exact result for & n. Furthermore from Appendix A,

ii) the MA is asymptotically exact for high energies (small •&').

Following the examples from sect. 4.3 we suggest:
I) The DCA is a good overall approximation.

II) For s4 « 1 the validity of the MA is much better than in the corresponding 
two-particle collision.

Ill) For s4 1, also the CVA is an excellent approximation

I. DCA. We first show that DCA and MA agree at high energies. Using the 
perturbation expansion 

Pd At)1 ü K0(pD/aD) ~ D 
aD Er

(4.5.1)

and inserting (3.3.8) one obtains

DCA: & =

For the MA we obtain from (A.7)

MA:
sp
— K0(sp/a) 
a

l/^ 
I -&0

(4.5.2)

(4.5.3)

in perfect agreement with (4.5.2). The second step in (4.5.1) using (2.2.3) is not 
exact as soon as PdI<1d is not large (s4 « 1). Numerically, $dca is 10 pct. smaller than 
^ma at PdI^d = 1 and large Eq.

Next, we compare DCA and CCA at large &. A convenient scattering formula 
near & = n is found by expanding (4.1.5)

cosd/2 = ~(1 + a'/R'o), for & n, (4.5.4)
-Ro

where R'o is defined in (4.1.6). Inserting (3.2.8) and (3.3.8) and neglecting a'/R'o in
(4.5.4) for low energy we get

CCA: cos^/2 =
s2Lla

(4.5.5)
InÇMA/miEo) ’

DCA: cos #/2 =
s^L/a

(4.5.6)
rimy

Obviously, the two expansions only agree for L/a 0 and s4 = 1. Otherwise both 
numerator and denominator in (4.5.6) are smaller than in (4.5.5) so that the numerical 
difference is not too big.

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 15. 3
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Fig. 10 b. Angle of forces to the negative x-axis in CCA, y — angle of the real force, yc = angle 
of the CCA force.

Fig. lOa-d. Comparison of real and approximate forces in the closest approach, for the 
example discussed in sect. 4.3 (Fig. 7); s4 = 1/3, E0[A = 4.4510-3.
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Fig. lOd. Angle of force to the negative x-axis in DCA. y = angle of real force, yp = angle of 
DCA force.

3*
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OF MOTION
Fig. 11. Comparison of forces in three characteristic points within the collision length (see Fig. 

13). L/a = 6; s4 = 1/3; Eo/A = 4.4510“3.

At intermediate scattering angles both CCA and MA are suspect. To estimate 
the accuracy of the DCA we compare the actual, elliptic force field with the spherical 
one from the DCA in that region where deflection takes place, i. e. within the 
collision length. The most important point is, of course, the closest approach r'm. 
In Fig. lOa-d we have plotted magnitude F and angle y (measured with respect 

to the negative x-direction) of the real force F and the approximate forces Fc and 

Fd in the closest approach as calculated respectively by the CCA and the DCA. 
Fig. 10 d shows that the direction of the force is very well approximated by the 
DCA at all impact parameters. The magnitude (Fig. 10 c) is only correct at L/a > 5, 
while it is drastically overestimated by the DCA at small L. This is immediately 
evident from the construction of the potential (Fig. 5). The scattering angle & 
is not affected very much by this discrepancy, but other quantities must be, for 
example the closest approach itself as well as time integral and collision length.

Figs. 10a and 10b show that the CCA force deviates considerably from the 
real force already at rather small values of L/a. This might explain the rather limited 
range of applicability of the CCA in Fig. 8. It means also that eq. (4.3.17) will in 
most cases be more adequate to determine -E^en than (4.3.16) or (4.3.19).

In order to estimate the accuracy of the DCA scattering angle at L/a 6 we 
note that the errors of yD and FD are around 5 pct., while the discrepancies of yc 
and Fc (Fig. 10 a and b) are very large. Furthermore, the direction of the discre- 
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pancies indicates that the DCA underestimates ■&, while CCA clearly overestimates. 
Hence, one would suppose that the DCA angle is about 5 pct. too small under the 
assumption that these relations are qualitatively the same within the whole collision 
length.

To be sure about this, we have also calculated the forces in two other points 
within the collision length, namely the points Pi and P2 from Fig. 13. It is easy 
to see that the length P1P2 is not much smaller than A as defined by (4.4.4). The 
forces are shown in Fig. 11 for the case L/a = 6. Po is the closest approach (Fig. 13). 
Clearly, the discrepancies in Pi and P2 are not greater than in Po.

We note that the validity of the DCA force field rapidly decreases, just as 
& > n/2. This seems evident from the construction of the potential (Fig. 5), as 
the particle is deflected far away from that point where we have matched the 
potential. We consider this result to be more general and assume in the following 
the DCA to be an accurate description of our model for & < n/2, except for s4 < 0.1, 
where the error in ft might exceed 10 pct. At -& > a/2, the scattering angle itself 
might be well approximated, but other quantities should be considered with care.

II. MA. We now investigate the error which is made by evaluating the DCA 
scattering angle by the MA. According to (4.5.2) and (4.5.3) this is equivalent to 
treating the original problem by the perturbation approach, for s4 > 0.1.

Following Lehmann & Leibfried (1963), the error can be estimated from the 
proportion of second and first order contributions in the perturbation series

to be

^(2)

i(î)

ft = ftA) + ft(2) + . . .

Aß (lI) \ ClD / \aD I
Er K0(pD/aD)

1.19

(4.5.7)

(4.5.8)

In the second step we used the asymptotic expansion of the Hankel functions Ko 
and Ki (Jahnke et al., 1960). Inserting (3.3.8) we get

#(!) \zh! ) E0\M a /y2

For the pure two-particle collision one would obtain

(4.5.9)

(4.5.10)

Obviously, (4.5.9) and (4.5.10) are only equivalent for m0 » mi. Already for m0 & mi 
there is a considerable difference, and for m0 « mi one gets

0(2) 
ftÖ)

A /m0 L
Eo \mi a

1.19\ 1
n A 2

g Lia • mQ « mi (4.5.9')
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instead of

(4.5.10')

for the two-particle collision. For the example illustrated in Fig. 8 the error in the 
energy loss, which is twice the error in angle, is predicted to be

<5(dE) 
~AË~

31 eV
Eo

(4.5.11)

by (4.5.9'), while (4.5.10') yields 114 eV/E0. Comparison to Fig. 8 shows that the 
actual discrepancy between MA and DCA is even smaller than (4.5.11), as long as 
Eo > £0(max).

III. CVA.
We show that CVA and MA agree at high energies. Starting at (3.4.4) we obtain

m0 A2
n------

mi Eo

7t L nT ,
_____ ß— ILIa

2 a 
(4.5.12)

in agreement with (2.2.2), if only L/a » 1. This asymptotic behaviour is independent 
of the mass ratio, contrary to the DCA, which means that in the case s4 « 1 the 
CVA is asymptotically exact, but a bad approximation at finite Eq, while the op­
posite holds for the DCA.

At rriQ » 771], both DCA and CVA have the right asymptotic behaviour. In order 
to find the deviations at smaller energies, we consider the second order momentum 
approximation. Expanding both #(DCA) and a(CVA) as well as the expressions for 
the energy loss (2.4.13) and (3.4.4) in powers of A, we obtain to the second order

(4.5.13)

0. a^l/at1) is easily found

large Eq. (4.5.14)

is seen1. It

CVA under-

within

#(2)
#(2)/#(i) is given in (4.5.9) apart from the sign: —— < 

VA1)
using the definitions in sect. (3.4), so we obtain

ZIE(DCA)
------—— = 1+1.19V2JE(CVA) 1

ZlE(DCA) 
zlE(CVA)

77?o E(4.5.14) is independent of the mass ratio but only correct for — » 

that the CVA underestimates AE, which is to be expected, as the 
estimates the collision time.

For numerical estimates one should remember that (4.5.14) is only valid 
the radius of convergence of the perturbation series.

1 + 2#(2)/#<1) 
l~+~2a(2>/od1) ~ +

nAe~ L!a
----------- , for

Eo
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Fig. 12 a. Starting angle of ring particle 1 as a function of projectile energy for different numbers 
of ring atoms (n = 2, 3, 4), compared to n = 1 (pure two-particle scattering), MA and CVA.

4.6 Angular relations
It would be of considerable interest also to investigate inany-body scattering 

events which are not as symmetrical as the model discussed until now. It is im­
mediately evident that most of the techniques applied in the present paper are 
rather specific for the symmetric ring collision and cannot be generalized in a straight­
forward manner.

If we confine ourselves to distant collisions it will always be reasonable to apply 
the MA above some well-defined limiting energy. At low energies, it will often 
happen that the path of the projectile may be well approximated by a straight 
line, even if the relative energy transfer to atoms surrounding the path is not small, 
just because of the stabilizing effect of an assembly of scattering centers. In these 
cases, it seems most reasonable to apply the CVA in order to calculate the trans­
ferred energy, rather than to resolve all interactions into two-body events and 
treat these by familiar scattering theory.

Applying the CVA to a given scattering problem, one obtains energies and 
directions of motion for all the struck particles. From that, using conservation 
laws, one might also get the total energy and momentum change of the projectile. 
This procedure has been used by Weijsenfeld (1964) in the theory of assisted 
focusing collision sequences. The validity of the approach has not been estimated.

From our model, it is only possible to estimate the accuracy of the CVA in the 
completely symmetrical case, where the assumptions underlying the CVA are best 
satisfied. As to the calculation of transferred energies, this has been done in the 
preceding section. In order to see that the situation is quite analogous with respect 
to angular relations, we just discuss an example. In Fig. 12a, we have plotted the 
cosine of the starting angle <pi of ring particle 1 for different approximations and 
various numbers of ring atoms. The CVA claims that (pi is independent of n. Within 
the DCA, the angle <pi appears to be almost identical for n = 2, 3 and 4.
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DCA
n-3 n=4 MA

Fig. 12b. Energy transfer AEY to one ring atom corresponding to the angles in Fig. 12a.

In the energy region where the MA fails completely, the scattering angle cal­
culated from the assumption of pure two-particle scattering (“n = 1”) appears still 
to be a satisfactory approximation1. This is not the case if one considers the energy

1 Note that for large E
I mi \

COS 0?! = 1 H------ COS ,
/2-body \ mo > CVA

due to the violation of momentum conservation in x-direction. In applications, this discrepancy 
is unimportant.
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J El transferred to one ring atom (Fig. 12b). Here, the two-particle approach fails 
completely. One might suppose that the relations between the different approaches 
as indicated in Fig. 12 a and b are more general, but a detailed investigation is 
outside the scope of this paper.

§ 5. Limitations of the Model

5.1 Validity of classical scattering

A detailed investigation of the limitations of classical scattering due to 
lhe uncertainty principle would require a wave packet description of our 
model. This requires in turn some knowledge of the classical orbits in the 
case of deviations from perfect symmetry which are not considered in this 
paper.

In order to get a feeling for the magnitude of quantum corrections to 
our model, we estimate the accuracy of AEX and AE only in the special 
case of a heavy projectile (m0 » m-^ and small energy transfer, where the 
main uncertainly arises from localizing the ring particles, so (hat the pro­
jectile may be considered to have well-defined position and momentum.

The uncertainty in lhe scattering angle oc of one ring particle in a system 
moving with velocity v0 (Fig. 6) is calculated by the method of Bohr (1948) 
modified for Born-Mayer scattering. Assuming

da/dL — oc/a,

one obtains the relative uncertainty

da l/^i 
a r aa ’ 

where

™iyo’

As a determines the energy transfer, we obtain from (3.4.4)

d(Zl£'1) , ôoe
AE± oc

for the relative uncertainty in AEi.
Finally, since the different ring particles are independent of each other, 

the uncertainty in the total energy loss AE is given by

(5.1.1)

(5.1.2)

(5.1.3)
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_ ,2 Ô(J£1) _ / V'4
AE AEX y^n^AE)

Assuming a = 0.2 Å one obtains from (5.1.5)

Ô(AE} /0.8eV\1/4
AlT “ \hAjAe] ’

(5.1.5)

(5.1.6)

where Ax is the mass number. As the energy at which the fraction (5.1.6) 
becomes comparable to 1 usually lies in the range of validity of the MA, 
one might suppose that the classical approach should be successful below 
this limit, also at energies where the MA breaks down.

The relations (5.1.4) and (5.1.5) remain qualitatively correct even for 
in0 ~ m1, as long as the energy loss is small. But in the energy region where 
the projectile can be reflected, these considerations might be insufficient.

One should mention that the limiting energies calculated by Lehmann & 
Leibfried (1963) are considerably higher than those arising from (5.1.4) or 
related equations. This is due to the fact that the criterion of Williams (1945) 
used by these authors in the case of screened potentials is only a necessary 
condition for the applicability of classical orbit pictures.

5.2 Inelasticity

Due to ionization and excitation of electrons the collisions in a crystal are not 
perfectly elastic. It has often been assumed that a certain ionization threshold 
energy Ej exists below which inelastic effects should be negligible. It seems well- 
established that such a general threshold in the sense of a cut-off energy does not 
exist. Nevertheless, there might be a characteristic energy separating those regions, 
where, respectively, elastic and inelastic effects dominate, but this energy will in 
general depend in a sensitive way on the considered effect.

In this paper we are concerned with particle velocities much smaller than e2//l, 
so that dipole resonance excitation will not take place (Bohr, 1948). One only deals 
with close Coulomb encounters of the projectile with the electrons of the crystal. 
Seitz (1949) assumed that these will not lead to excitation if the maximum energy 
transfer is smaller than the Fermi energy in a metal or the ionization energy in 
an insulator. The theory for stopping of charged particles in an electron gas (Lind- 
hard, 1954) does not confirm this statement. The stopping power turns out to be 
proportional to velocity:

(5.2.1)

the proportionality constant depending on the charge of the projectile and the 
density of the electron gas. Within the limits of applicability of the Thomas-Fermi 
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model eq. (5.2.1) should also be valid for non-uniform electron gases as they occur 
in solids and, especially, in metals.

As electronic stopping acts only as a minor correction on the orbit of the pro­
jectile, it seems to be a reasonable approximation to treat the collision as being 
elastic and to add the inelastic contribution later on, provided the proportionality 
constant in (5.2.1) can be calculated. Electronic stopping may be dominating at 
energies considerably below the ionization limit, especially in channelled motion.

5.3 Effect of binding forces

In our scattering model it is an essential assumption that the ring atoms 
are not bound by external forces or interact with one another. In a crystal, 
however, the atoms are bound to their lattice sites by oscillator forces, as 
a first approximation.

It has been shown by Bohr (1913, 1948) that oscillator forces can be 
neglected in collision problems if the collision time zlr obeys the condition

co1At < 1, (5.3.1)

where is the oscillator frequency of the struck particle. Eq. (5.3.1) 
defines an adiabatic limit. For a>1Ar > 1, the energy loss is overestimated 
by assuming free scattering.

As the collision time increases with decreasing energy, our description 
can only be correct above some limiting energy which turns out to be quite 
small.

For dr we use, for not too small .s4 and & « a/2 , the first term in (4.4.12), so

(dr)2 -
271«^

Oo)2
2naL

(5.3.2)

The frequency coi is conveniently found from the coupling constants of the 
lattice by assuming all atoms fixed except 1. If we only take nearest neighbour 
interaction into account, we get

for the FCC lattice: 77?1co2 *=»  4(a + 2ß) (5.3.3)

and for the BCC lattice: 7?qm2 8a, (5.3.4)

where a and ß are coupling constants in the notation of Leibfried (1955). 
Hence, (5.3.1) reads
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and

nin aL(tx. + 2/5)
4%--------------------< 1 for FCC lattice,

7771 E0

mn aLa
8%----------< 1 for BCC lattice.

7771 Eo

> (5.3.5)

As an example, we discuss the <100) focuson in Cu considered by Weijsen- 
feld (1964). Here, we have (Jacobsen, 1955)

a = .30 eV/Å2; ß = .54 eV/Å2. (5.3.6)

For L/ci = 10, a = .2 Å and m0 = m1 we obtain

(5.3.7)

so that the condition (5.3.1) is fulfilled at Eo > 7 eV. As this energy is of 
the order of the potential barrier, the energy limits for reflection and pene­
tration, as defined in (4.3.16) etc., will suffer some modifications. The AE 
vs. Eo curves around and above E0(max) will not be affected.

Appendix A
Perturbation Expansion

Eq. (3.1.2) can in principle be solved by a perturbation series

y(x) = y(°>(x) + y(1)(x) + . . . . (Al)

in powers of the potential, 0. We write (3.1.2) in the form

I - MM + y/2) + (Er - ^y" = 0. (A 2)

Øj. and G>y indicating partial derivatives. The zero order term yields

-Fry(0),/(x) = 0; z/<°)'(x) = const. = 0; y<°)(x) = const. = p; (A3)

Collecting first order terms we obtain

^(æ,P) + EryAY' = 0
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or, using (2.4.8)
nps2 V'(j/x2/s2 + s2p2)
2Er ÿx^/s2 + s2p2

(A4)

where V' is the derivative of V with respect to the argument. 
The scattering angle & (fig. 3) in first order is given by

4- oc
(tg$)U) = yAY(x = oo) = J dxy^Y'(x)

— 00

00

rips3 f V'(jf)dr] 
Er J |/^2-s2p2 ’ 

sp

(A 5)

where we have made the substitution

X2js2 + S2p2 = 7?2.
For Born-Mayer interaction

V(rf) = Ae~rlla
(A5) yields

(tg^)d) = n.s2 •—/<0(sp/a). 
Er a

For small ■d<1>, we write

so (2.4.13) reads
(tg#)d) «s #(1) s» 2sin#<1)/2,

- 4^Eo(^D/2)2 m0 A2 
n--------

mi Eq

(A6)

(A 7)

(A 8)

(A 9)

where we have used (2.4.9), (2.4.11) and (2.4.7). Eq. (A9) agrees with (2.2.2), as 
it must be.

Collecting second order terms in (A2) we obtain

^(1)<WX’P) - - l/(1)"ø(x,p) + y(2)”Er = 0

or, after partial integration,
00

(tg#)<2> = y(2Y(oo) = -~~ J dxyW(x)^yy(x,p) - ®xx(x,p)). (A10)

— 00

As explained in sect. 3.1, there is no need to evaluate (A10) explicitly.
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Appendix B
The time integral

Let the laboratory coordinates (2.4.1) satisfy the initial conditions

æoGo) = “’0 < 0; æiGo) = 0; J/i(^o) = (Bl)
and

æoGo) = yoi æiGo) = î/i(*o)  = (B2)

From the definition (2.4.2) we get immediately the center-of-mass motion

A'(0 = A-(/„) + *((„)('  - /„) - + - 'o))- (B3)

For the relative coordinates x,y (2.4.4) we obtain 

•r(^o) — S^0’

æOo) = sl,0>

y(to) = L/s = p 

y(to) = °-

Integration of the equations of motion is possible for spherical potentials. 
Hence, we go over into the coordinate system (x',y') defined by the DCA,
where (Fig. 5)

Here,
æ' = æ; y' = y - yD = y - p(i -*4)- 

æ'Go) = s^o’ y'Oo) = s*p = ?z>

æ'Oo) = sv0- ÿ'(t0) = 0.

With the potential ø^r') from (3.3.4) we get

dr'
d/

± w0
Er

t J 0, (B7)

where r'2 = x'2 + y'2.
The closest approach is assumed at / = 0. Hence, t0 < 0. Integration 

from t0 to t = 0, assuming that the potential energy at t = t0 is negligible, 
yields

si’oto = rD + x'(t0) = rD + S-^O, for f0«0. (B8)

Here rD is the “time integral’’

= (rm - Pd)112 - | dr' Ifl 4>p(r')
Er
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which has been tabulated by Robinson (1963), and rm is the closest approach.
From (B3) and (B8) we get the position of the centre-of-mass at / = 0:

Ar(0) = s4(£0-p0f0) = -s3rn. (BIO)
As

æ'(°) = - 4 sin #/2 ,

the position of the projectile at the time of closest approach becomes

1 r
.ro(0) = A%0 ) + (1 - ,s4) - ,r'(0) = - s3td - (1 - s4) — sin &/2 , (B 11) 

.s- s

where use has been made of (2.4.5). Furthermore, for / » 0, we get in the 
same way as (B8)

svot = - +1/1-'2 - p2D ; for t » 0 . (Bl2)

This relation governs the asymptotic orbits. We have (Fig. 13) for t » 0
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y' = æ'tg#

and æ' and y' can be expressed by r':

x' = - pD sin & + cos • |/ r'2 - 

y' = pD cos & + sin & |/r'2 - p&.

Using eqs. (2.4.5), (Bl 2) and (Bl 3) one obtains 

æo(O = (vof + - 2 sir|2 #/2j - *3f2Uö + ~p sin Ö

æi(O = Oo*  1 Tn/S) • 2 sin2 0/2 - .s-3^2td - p sin Å 

Vi(0 = OV + td/s) • s2 sin d + */>(  1 ~ 2 sin2 ^2 P

for t » 0.

(B13)

(B14)
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